Smart Adaptive Power Management in Electrostatic Harvester of Vibration Energy
نویسندگان
چکیده
This paper reports a new functional design and modeling of a vibration energy harvester composed from a mechanical resonator (MEMS), capacitive transducer and a conditioning circuit based on the BUCK DCDC converter architecture. The basic configuration of conditioning circuit from [1][2] is enhanced with two major features for the power management allowing, firstly, to adapt dynamically to the variation of external vibration parameters and, secondly, a smart interface with the load, witch allows the system to manage a possibly variable load and to adapt to different situations (e.g. insufficient generated power level, load too large, etc.). The study is validated by behavioral VHDL-AMS/ELDO modeling.
منابع مشابه
A Smart Load Interface and Voltage Regulator for Electrostatic Vibration Energy Harvester
This paper presents a new implementation in ams 0.35μm HV technology of a complete energy management system for an electrostatic vibrational energy harvester (e-VEH). It is based on the Bennet’s doubler architecture and includes a load voltage regulator (LVR) and a smart Load Interface (LI) that are self-controlled with internal voltages for maximum power point tracking (MMPT). The CMOS impleme...
متن کاملResonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester
The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...
متن کاملAn Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester
Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...
متن کاملWideband Electrostatic Vibration Energy Harvester (e-VEH) Having a Low Start-Up Voltage Employing a High-Voltage Integrated Interface
This paper reports on an electrostatic Vibration Energy Harvester (e-VEH) system, for which the energy conversion process is initiated with a low bias voltage and is compatible with wideband stochastic external vibrations. The system employs the auto-synchronous conditioning circuit topology with the use of a novel dedicated integrated low-power highvoltage switch that is needed to connect the ...
متن کاملHarvesting Vibrational Energy Using Material Work Functions
Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinctio...
متن کامل